Argomenti di tendenza
#
Bonk Eco continues to show strength amid $USELESS rally
#
Pump.fun to raise $1B token sale, traders speculating on airdrop
#
Boop.Fun leading the way with a new launchpad on Solana.
I VLA sono ancora molto nuovi e molte persone trovano difficile comprendere la differenza tra VLA e LLM.
Ecco un'analisi approfondita su come questi sistemi AI differiscono in ragionamento, percezione e azione. Parte 1.
Analizziamo le principali distinzioni e come gli agenti AI avvolti attorno a un LLM differiscano dagli agenti operativi che utilizzano modelli VLA:
1. Percezione: Come percepiscono il mondo
Agente (LLM): Elabora testo o dati strutturati, ad esempio JSON, API e a volte immagini. È come un cervello che lavora con input puliti e astratti. Pensa a leggere un manuale o analizzare un foglio di calcolo. Ottimo per ambienti strutturati ma limitato da ciò che gli viene fornito.
Operatore (VLA): Vede pixel grezzi e in tempo reale dalle telecamere, oltre ai dati dei sensori (ad es., tatto, posizione) e alla propriocezione (consapevolezza del movimento). È come navigare nel mondo con occhi e sensi, prosperando in ambienti dinamici e disordinati come interfacce utente o spazi fisici.
2. Azione: Come interagiscono
Agente: Agisce chiamando funzioni, strumenti o API. Immaginalo come un manager che invia istruzioni precise come "prenota un volo tramite l'API di Expedia." È deliberato ma si basa su strumenti predefiniti e interfacce chiare.
Operatore: Esegue azioni continue e a basso livello, come muovere un cursore del mouse, digitare o controllare le articolazioni di un robot. È come un lavoratore esperto che manipola direttamente l'ambiente, ideale per compiti che richiedono precisione in tempo reale.
3. Controllo: Come prendono decisioni
Agente: Segue un ciclo lento e riflessivo: pianifica, chiama uno strumento, valuta il risultato, ripete. È vincolato ai token (limitato dall'elaborazione del testo) e vincolato alla rete (in attesa delle risposte API). Questo lo rende metodico ma lento per compiti in tempo reale.
Operatore: Opera, prendendo decisioni passo dopo passo in un ciclo di feedback stretto. Pensa a un videogiocatore che reagisce istantaneamente a ciò che appare sullo schermo. Questa velocità consente un'interazione fluida ma richiede un'elaborazione robusta in tempo reale.
4. Dati per apprendere: Cosa alimenta il loro addestramento
Agente: Addestrato su vasti corpora di testo, istruzioni, documentazione o set di dati RAG (Generazione Aumentata da Recupero). Impara da libri, codice o FAQ, eccellendo nel ragionamento su conoscenze strutturate.
Operatore: Impara da dimostrazioni (ad es., video di umani che eseguono compiti), registri di teleoperazione o segnali di ricompensa. È come imparare guardando e praticando, perfetto per compiti in cui le istruzioni esplicite sono scarse.
5. Modi di fallimento: Dove si rompono...

Principali
Ranking
Preferiti